Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Front Immunol ; 14: 1131985, 2023.
Article in English | MEDLINE | ID: covidwho-20230927

ABSTRACT

The mRNA vaccines (RVs) can reduce the severity and mortality of severe acute respiratory syndrome coronavirus (SARS-CoV-2). However, almost only the inactivated vaccines (IVs) but no RVs had been used in mainland China until most recently, and the relaxing of its anti-pandemic strategies in December 2022 increased concerns about new outbreaks. In comparison, many of the citizens in Macao Special Administrative Region of China received three doses of IV (3IV) or RV (3RV), or 2 doses of IV plus one booster of RV (2IV+1RV). By the end of 2022, we recruited 147 participants with various vaccinations in Macao and detected antibodies (Abs) against the spike (S) protein and nucleocapsid (N) protein of the virus as well as neutralizing antibodies (NAb) in their serum. We observed that the level of anti-S Ab or NAb was similarly high with both 3RV and 2IV+1RV but lower with 3IV. In contrast, the level of anti-N Ab was the highest with 3IV like that in convalescents, intermediate with 2IV+1RV, and the lowest with 3RV. Whereas no significant differences in the basal levels of cytokines related to T-cell activation were observed among the various vaccination groups before and after the boosters. No vaccinees reported severe adverse events. Since Macao took one of the most stringent non-pharmaceutical interventions in the world, this study possesses much higher confidence in the vaccination results than many other studies from highly infected regions. Our findings suggest that the heterologous vaccination 2IV+1RV outperforms the homologous vaccinations 3IV and 3RV as it induces not only anti-S Ab (to the level as with 3RV) but also anti-N antibodies (via the IV). It combines the advantages of both RV (to block the viral entry) and IV (to also intervene the subsequent pathological processes such as intracellular viral replication and interference with the signal transduction and hence the biological functions of host cells).


Subject(s)
COVID-19 , Nucleocapsid Proteins , Humans , Macau , SARS-CoV-2 , Vaccines, Inactivated , COVID-19/prevention & control , Antibodies, Neutralizing , mRNA Vaccines
2.
ACS Sens ; 7(7): 1985-1995, 2022 07 22.
Article in English | MEDLINE | ID: covidwho-1908098

ABSTRACT

To control the coronavirus disease 2019 (COVID-19) pandemic, there is an urgent need for simple, rapid, and reliable detection methods to identify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, especially in community hospitals or clinical centers. The SARS-CoV-2 nucleocapsid protein (NP) is an important index for diagnosis of COVID-19. Here, we proposed a smartphone-based high-throughput fiber-integrated immunosensing system (HFIS) for detecting the SARS-CoV-2 NP in serum samples within 45 min. For the testing of NP standards, the linear detection range was 7.8-1000 pg/mL, the limit of detection was 7.5 pg/mL, and the cut-off value was 8.923 pg/mL. Twenty-five serum samples from clinically diagnosed COVID-19 patients and 100 negative control samples from healthy blood donors were tested for SARS-CoV-2 NP by HFIS, and the obtained results were compared with those of ELISA and Simple Western analysis. The results showed that the HFIS sensitivity and specificity were 72% [95% confidence interval (CI): 52.42-85.72%] and 100% (95% CI: 96.11-100%), respectively, which significantly correlated with those from the commercial ELISA kit and Simple Western analysis. This portable high-throughput HFIS assay could be an alternative test for detecting SARS-CoV-2 NP in blood samples on site.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Pandemics , Point-of-Care Testing , Smartphone
3.
Int J Infect Dis ; 121: 58-65, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1804270

ABSTRACT

BACKGROUND: As several vaccines for SARS-CoV-2 have been developed, a large proportion of individuals have been vaccinated worldwide so far. The rapid and accurate immunoassays are urgently needed for detecting the specific virus-neutralizing antibody (NAb), which reflect the protective effect of the vaccines among different populations. METHODS: In this study, we designed a quantum dot lateral flow immunoassay strip (QD-LFIA) for smartphones for the detection of specific IgG or neutralizing antibodies in SARS-CoV-2 in human serum or whole blood samples. The recombinant receptor binding domain of the SARS-CoV-2 spike protein was used as the antigen to combine with NAb or angiotensin-converting enzyme 2. RESULTS: Among 81 patients who recovered from COVID-19 who were diagnosed using the nucleic acid test initially, 98.8% (80/81) were positive for IgG and 88.9% (72/81) were positive for NAb by QD-LFIA. Among 64 individuals inoculated with inactivated vaccines and six subunit vaccines, 90% (63/70) were positive for IgG and 82.9% (58/70) were positive for NAb by QD-LFIA, whereas no cross-reaction was found in 150 healthy blood donors, two patients with influenza B, and three patients with common cold. CONCLUSION: The established platform could achieve a rapid and accurate detection of NAb specific to SARS-CoV-2, which could be used for detecting the protective effect of the vaccines in areas of world that currently affected by the pandemic.


Subject(s)
COVID-19 , Quantum Dots , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Vaccines , Humans , Immunoassay , Immunoglobulin G , SARS-CoV-2 , Smartphone , Spike Glycoprotein, Coronavirus
4.
J Immunother Cancer ; 10(3)2022 03.
Article in English | MEDLINE | ID: covidwho-1736087

ABSTRACT

Anti-COVID-19 vaccination may have functional implications for immune checkpoint inhibitor treatment in patients with cancer. This study was undertaken to determine whether the safety or efficacy of anti-PD-1 therapy is reduced in patients with cancer during COVID-19 vaccination. A large multicenter observational study was conducted in 83 Chinese hospitals between January 28, 2021 and September 30, 2021. A total of 3552 patients were screened and 2048 eligible patients with cancer receiving PD-1 inhibitor treatment were recruited. All enrolled patients had received camrelizumab treatment alone or in conjunction with other cancer therapies. Among these, 1518 (74.1%) patients received the BBIBP-CorV vaccine and were defined as the vaccinated subgroup. The remaining 530 (25.9%) patients did not receive anti-COVID-19 vaccination and were defined as the non-vaccinated subgroup. For all participants, Response Evaluation Criteria in Solid Tumor and Common Terminology Criteria for Adverse Events criteria were used to evaluate the efficacy and safety of camrelizumab treatment, respectively. Propensity score match analysis with the optimal pair matching was used to compare these criteria between the vaccinated and non-vaccinated subgroups. A total of 2048 eligible patients with cancer were included (median age 59 years, 27.6% female). Most patients (98.8%) had metastatic cancer of the lung, liver or intestinal tract. Aside from the PD-1 inhibitor treatment, 55.9% of patients received additional cancer therapies. 1518 (74.1%) patients received the BBIBP-CorV vaccine with only mild side effects reported. The remaining patients did not receive COVID-19 vaccination and had a statistically greater percentage of comorbidities. After matching for age, gender, cancer stage/types, comorbidity and performance status, 1060 patients (530 pairs) were selected for propensity score match analysis. This analysis showed no significant differences in overall response rate (25.3% vs 28.9%, p=0.213) and disease control rate (64.6% vs 67.0%, p=0.437) between vaccinated and non-vaccinated subgroups. Immune-related adverse events (irAEs) were reported in both subgroups after camrelizumab treatment. Among vaccinated patients who experienced irAEs, the median interval between the first dose of camrelizumab treatment and the first vaccine shot was ≤16 days. Compared with the non-vaccinated subgroup, irAEs in vaccinated patients were more frequently reported as mild (grade 1 or 2 irAEs; 33.8% vs 19.8%, p<0.001) and these patients were less likely to discontinue the PD-1 inhibitor treatment (4.2% vs 20.4%, p<0.001). Severe irAEs (grade 3 irAE or higher) related to camrelizumab treatment were reported, however no significant differences in the frequency of such events were observed between the vaccinated and non-vaccinated subgroups. The COVID-19 vaccine, BBIBP-CorV, did not increase severe anti-PD-1-related adverse events nor did it reduce the clinical efficacy of camrelizumab in patients with cancer. Thus, we conclude that patients with cancer need not suspend anti-PD-1 treatment during COVID-19 vaccination.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , SARS-CoV-2 , Vaccines, Inactivated/therapeutic use , Aged , Female , Humans , Male , Middle Aged , Treatment Outcome , Vaccination
5.
Int J Mol Sci ; 22(23)2021 Nov 30.
Article in English | MEDLINE | ID: covidwho-1559206

ABSTRACT

Cytokine storm is a phenomenon characterized by strong elevated circulating cytokines that most often occur after an overreactive immune system is activated by an acute systemic infection. A variety of cells participate in cytokine storm induction and progression, with profiles of cytokines released during cytokine storm varying from disease to disease. This review focuses on pathophysiological mechanisms underlying cytokine storm induction and progression induced by pathogenic invasive infectious diseases. Strategies for targeted treatment of various types of infection-induced cytokine storms are described from both host and pathogen perspectives. In summary, current studies indicate that cytokine storm-targeted therapies can effectively alleviate tissue damage while promoting the clearance of invading pathogens. Based on this premise, "multi-omics" immune system profiling should facilitate the development of more effective therapeutic strategies to alleviate cytokine storms caused by various diseases.


Subject(s)
COVID-19/pathology , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/pathology , Cytokines/blood , Sepsis/pathology , Anti-Inflammatory Agents/therapeutic use , Bacteria/immunology , Bacterial Infections/pathology , Cytokines/metabolism , Humans , Inflammation/pathology , Macrophages/immunology , SARS-CoV-2/immunology , Sepsis/microbiology
6.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(11): 1091-1096, 2021 Nov 15.
Article in English, Chinese | MEDLINE | ID: covidwho-1513019

ABSTRACT

OBJECTIVES: To investigate vitamin D nutritional status in children after outbreak of coronavirus disease 2019 (COVID-19), as well as the effect of strict epidemic prevention and control measures for the COVID-19 epidemic on vitamin D nutritional status in children. METHODS: A total of 7 460 children who underwent routine physical examinations from February to August, 2020 and had normal results were retrospectively enrolled as the observation group, and 10 102 children who underwent routine physical examinations from February to August, 2019 (no epidemic of COVID-19) and had normal results were enrolled as the control group. The serum level of 25-hydroxy vitamin D [25(OH)D] was compared between the two groups. The children in the observation and control groups who underwent physical examinations in March and April were selected as the epidemic prevention subgroup (n=1 710) and non-epidemic subgroup (n=2 877) respectively. The subjects were divided into five age groups (infancy, early childhood, preschool, school age and adolescence), and serum 25(OH)D levels of children of all ages were compared between the epidemic prevention and non-epidemic subgroups. RESULTS: The observation group had a lower serum level of 25(OH)D than the control group in March and April (P<0.001). The epidemic prevention subgroup had a lower serum level of 25(OH)D than the non-epidemic subgroup in all age groups (P<0.001). The vitamin D sufficiency rate in early childhood, preschool, school and adolescent children from the epidemic prevention subgroup was lower than the non-epidemic subgroup (P<0.001), with a reduction of 10.71%, 18.76%, 59.63% and 56.29% respectively. CONCLUSIONS: Strict prevention and control measures for the COVID-19 epidemic may lead to a significant reduction in vitamin D level in children, especially school-aged and adolescent children. It is recommended to timely monitor vitamin D level in children, take vitamin D supplements, and increase the time of outdoor sunshine as far as possible under the premise of adherence to epidemic prevention regulations.


Subject(s)
COVID-19 , Vitamin D Deficiency , Adolescent , Child , Child, Preschool , Disease Outbreaks , Humans , Nutritional Status , Retrospective Studies , SARS-CoV-2 , Vitamin D , Vitamin D Deficiency/epidemiology
7.
Front Microbiol ; 12: 692831, 2021.
Article in English | MEDLINE | ID: covidwho-1403487

ABSTRACT

Since December 2019, a novel coronavirus (SARS-CoV-2) has resulted in a global pandemic of coronavirus disease (COVID-19). Although viral nucleic acid test (NAT) has been applied predominantly to detect SARS-CoV-2 RNA for confirmation diagnosis of COVID-19, an urgent need for alternative, rapid, and sensitive immunoassays is required for primary screening of virus. In this study, we developed a smartphone-based nanozyme-linked immunosorbent assay (SP-NLISA) for detecting the specific nucleocapsid phosphoprotein (NP) of SARS-CoV-2 in 37 serum samples from 20 COVID-19 patients who were diagnosed by NAT previously. By using SP-NLISA, 28/37 (75.7%) serum samples were detected for NP antigens and no cross-reactivity with blood donors' control samples collected from different areas of China. In a control assay using the conventional enzyme-linked immunosorbent assay (ELISA), only 7/37 (18.91%) serum samples were detected for NP antigens and no cross-reactivity with control samples. SP-NLISA could be used for rapid detection of SARS-CoV-2 NP antigen in primary screening of SARS-CoV-2 infected individuals.

8.
Emerg Microbes Infect ; 10(1): 1002-1015, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1231006

ABSTRACT

ABSTRACTCOVID-19 vaccines are being developed urgently worldwide. Here, we constructed two adenovirus vectored COVID-19 vaccine candidates of Sad23L-nCoV-S and Ad49L-nCoV-S carrying the full-length gene of SARS-CoV-2 spike protein. The immunogenicity of two vaccines was individually evaluated in mice. Specific immune responses were observed by priming in a dose-dependent manner, and stronger responses were obtained by boosting. Furthermore, five rhesus macaques were primed with 5 × 109 PFU Sad23L-nCoV-S, followed by boosting with 5 × 109 PFU Ad49L-nCoV-S at 4-week interval. Both mice and macaques well tolerated the vaccine inoculations without detectable clinical or pathologic changes. In macaques, prime-boost regimen induced high titers of 103.16 anti-S, 102.75 anti-RBD binding antibody and 102.38 pseudovirus neutralizing antibody (pNAb) at 2 months, while pNAb decreased gradually to 101.45 at 7 months post-priming. Robust T-cell response of IFN-γ (712.6 SFCs/106 cells), IL-2 (334 SFCs/106 cells) and intracellular IFN-γ in CD4+/CD8+ T cell (0.39%/0.55%) to S peptides were detected in vaccinated macaques. It was concluded that prime-boost immunization with Sad23L-nCoV-S and Ad49L-nCoV-S can safely elicit strong immunity in animals in preparation of clinical phase 1/2 trials.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunization, Secondary , SARS-CoV-2/immunology , Adenoviridae/genetics , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/adverse effects , Female , Genetic Vectors , HEK293 Cells , Humans , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes/immunology
9.
Clin Microbiol Infect ; 26(12): 1690.e1-1690.e4, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1018998

ABSTRACT

OBJECTIVES: The aim was to understand persistence of the virus in body fluids the and immune response of an infected host to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), an agent of coronavirus disease 2019 (COVID-19). METHODS: We determined the kinetics of viral load in several body fluids through real time reverse transcription polymerase chain reaction, serum antibodies of IgA, IgG and IgM by enzyme-linked immunosorbent assay and neutralizing antibodies by microneutralization assay in 35 COVID-19 cases from two hospitals in Guangdong, China. RESULTS: We found higher viral loads and prolonged shedding of virus RNA in severe cases of COVID-19 in nasopharyngeal (1.3 × 106 vs 6.4 × 104, p < 0.05; 7∼8 weeks) and throat (6.9 × 106 vs 2.9 × 105, p < 0.05; 4∼5 weeks), but similar in sputum samples (5.5 × 106 vs 0.9 × 106, p < 0.05; 4∼5 weeks). Viraemia was rarely detected (2.8%, n = 1/35). We detected early seroconversion of IgA and IgG at the first week after illness onset (day 5, 5.7%, n = 2/35). Neutralizing antibodies were produced in the second week, and observed in all 35 included cases after the third week illness onset. The levels of neutralizing antibodies correlated with IgG (rs = 0.85, p < 0.05; kappa = 0.85) and IgA (rs = 0.64, p < 0.05; kappa = 0.61) in severe, but not mild cases (IgG, rs = 0.42, kappa = 0.33; IgA, rs = 0.32, kappa = 0.22). No correlation with IgM in either severe (rs = 0.17, kappa = 0.06) or mild cases (rs = 0.27, kappa = 0.15) was found. DISCUSSION: We revealed a prolonged shedding of virus RNA in the upper respiratory tract, and evaluated the consistency of production of IgG, IgA, IgM and neutralizing antibodies in COVID-19 cases.


Subject(s)
Antibodies, Viral/blood , Body Fluids/virology , COVID-19/immunology , Viral Load , Virus Shedding , Antibodies, Neutralizing/blood , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , China , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Kinetics , Nasopharynx/virology , Pandemics , Pharynx/virology , RNA, Viral/genetics , Respiratory System/virology , SARS-CoV-2 , Sputum/virology
10.
Emerg Infect Dis ; 26(8): 1834-1838, 2020 08.
Article in English | MEDLINE | ID: covidwho-209889

ABSTRACT

We prospectively assessed 49 coronavirus disease cases in Guangdong, China, to estimate the frequency and duration of detectable severe acute respiratory syndrome coronavirus 2 RNA in human body fluids. The prolonged persistence of virus RNA in various body fluids may guide the clinical diagnosis and prevention of onward virus transmission.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , RNA, Viral/genetics , Adolescent , Adult , Aged , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , Child , Child, Preschool , China/epidemiology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Feces/virology , Female , Hospitalization/statistics & numerical data , Humans , Infant , Male , Middle Aged , Nasopharynx/virology , Pharynx/virology , Pneumonia, Viral/diagnosis , Prospective Studies , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Severity of Illness Index , Sputum/virology , Time Factors
11.
Cell ; 181(5): 997-1003.e9, 2020 05 28.
Article in English | MEDLINE | ID: covidwho-60418

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2 infection and was first reported in central China in December 2019. Extensive molecular surveillance in Guangdong, China's most populous province, during early 2020 resulted in 1,388 reported RNA-positive cases from 1.6 million tests. In order to understand the molecular epidemiology and genetic diversity of SARS-CoV-2 in China, we generated 53 genomes from infected individuals in Guangdong using a combination of metagenomic sequencing and tiling amplicon approaches. Combined epidemiological and phylogenetic analyses indicate multiple independent introductions to Guangdong, although phylogenetic clustering is uncertain because of low virus genetic variation early in the pandemic. Our results illustrate how the timing, size, and duration of putative local transmission chains were constrained by national travel restrictions and by the province's large-scale intensive surveillance and intervention measures. Despite these successes, COVID-19 surveillance in Guangdong is still required, because the number of cases imported from other countries has increased.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Bayes Theorem , COVID-19 , China/epidemiology , Coronavirus Infections/virology , Epidemiological Monitoring , Humans , Likelihood Functions , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Travel
SELECTION OF CITATIONS
SEARCH DETAIL